
13 Inverses

1.

(a) With real numbers, one of the important purposes of division is that it lets you solve equa-
tions like 𝑎𝑥 = 𝑏 for 𝑥. Solve this by division (difficult!).

We divide both sides by 𝑎, to get 𝑥 = 𝑏
𝑎 .

(b) If division didn’t exist, you could still solve this equation by multiplication. The number
you’d multiply by is called the “multiplicative inverse” of 𝑎. What is the property that de-
fines this special number?

The property defining the number is that it is the unique number which, when multiplying by 𝑎, yields 1.
That is, if the number is 𝑐, then 𝑎𝑐 = 1.

(c) The multiplicative inverse of 𝑎 is often written 𝑎−1. Why does this notation make sense?

Since 𝑎 = 𝑎1, we have 𝑎−1𝑎1 = 𝑎1−1 = 𝑎0 = 1.

2.

(a) For fixed 𝑎, 𝑏, you might think that the equation 𝑎𝑥 = 𝑏 has only one solution, but sometimes
it can have zero or infinitely many. Give an example of both cases.

There are zero solutions if 𝑎 = 0 and 𝑏 ≠ 0, for example (𝑎, 𝑏) = (0, 1). There are infinite solutions if 𝑎 = 0
and 𝑏 = 0.

(b) How does the existence of a unique solution relate to the idea of multiplicative invertibility?

The unique solution can be found by multiplying both sides by 𝑎−1... if it exists. If it doesn’t exist, then
there isn’t a unique solution. In this case, 0 does not have a multiplicative inverse24, so it causes either no
solution or multiple solutions to exist.

(c) Are there any other possible numbers of solutions?

In this case, no. The easiest way is to simply construct all solutions for various values of 𝑎, 𝑏. We have
𝑥 = 𝑏

𝑎 for 𝑎 ≠ 0, which is only one solution, and the other two cases we’ve already described; they have either
an infinite number of solutions or no solutions.

3.

(a) Define “one-to-one” function.

A one-to-one function, also known as a bijection, is a function between two sets which maps each element
of each set to exactly one element of the other set, and vice versa.

(b) Is 𝑓 (𝑥) = 𝑎𝑥 a one-to-one function for all real 𝑎? (Hint: Look for the silly exception(s)!)

It is one-to-one for 𝑎 ≠ 0, but 𝑓 (𝑥) = 0𝑥 = 0 maps every real number to 0, which is certainly not a bijection;
the mapping is not unique.

4. Would your answers to the previous numbers change if you were talking about complex numbers
instead of just real numbers? Why or why not?

They would not change. 𝑓 (𝑥) = 𝑐𝑥 is still one-to-one for complex 𝑐, 𝑥, except for 𝑐 = 0. After all, the
inverse function is 𝑓−1(𝑥) = 1

𝑐 ⋅ 𝑥, and 1
𝑐 is defined for all 𝑐 ≠ 0.

5. In the following problems, 𝑥 can be any integer from 0 to 11.

(a) Find all solutions of 5𝑥 ≡ 7 in clock arithmetic.

24Unless you’re Brandon and trying to be annoying in Bio
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We see that we must solve 5𝑥 = 7 + 12𝑎 for integer solutions. While we could check 𝑎 values manually, a
simpler method is to notice that we just need to find 𝑎 so that 𝑥 = 7+12𝑎

5 is an integer. We have

7 + 12𝑎
5

= 1 + 2 + (10 + 2)𝑎
5

= 1 + 2𝑎 + 2 + 2𝑎
5

.

This is only an integer when 2 + 2𝑎 is divisible by 5, which first happens when 𝑎 = 4. This yields the
solution 11. Thus, 𝑥 = 11 is the only solution.

(b) Find all solutions of 2𝑥 ≡ 6 in clock arithmetic.

We want to solve 2𝑥 = 6 + 12𝑎 for integer solutions. Since 𝑥 is an integer for all integers 𝑎, we just need
𝑥 = 3 + 6𝑎. This gives 𝑥 = 3, 9.

(c) Find all solutions of 6𝑥 ≡ 6 in clock arithmetic.

We want to solve 6𝑥 = 6 + 12𝑎 for integer solutions. Again, 𝑥 is an integer for all integers 𝑎, so we just
need 𝑥 = 1 + 2𝑎. This yields 𝑥 = 1, 3, 5, 7, 9, 11.

(d) Find all solutions of 2𝑥 ≡ 7 in clock arithmetic.

This has no solutions, since 7 + 12𝑎 is never even for 𝑎 ∈ ℤ.

(e) For integers 𝑎, 𝑏, what are all possible numbers of solutions that 𝑎𝑥 ≡ 𝑏 can have in clock
arithmetic?

We could try every pair (𝑎, 𝑏), but that’s 144 combinations; no thanks.
We have 𝑎𝑥 = 𝑏 + 12𝑘 for some integer 𝑘. Solving for 𝑘 in terms of 𝑎, 𝑏, 𝑥, we find that 𝑘 = 𝑎𝑥−𝑏

12 . Thus, for
𝑥 taking on values 0 through 11, we must find how many such values have 𝑎𝑥 − 𝑏 divisible by 12.

We know that 0 values are possible; (𝑎, 𝑏) = (2, 7) is an example. Suppose, however, that we have a
solution, say 𝑥1, so that 𝑎𝑥1 − 𝑏 = 12𝑘1 for some value of 𝑘1. Let the other solutions be 𝑥1 + 𝑚 for some
integer 𝑚, so 𝑎(𝑥1 +𝑚) − 𝑏 = 12𝑘2. But the left side is 𝑎𝑥1 − 𝑏+ 𝑎𝑚, so 𝑎𝑚 must be divisible by 12. The values
of 𝑚 which make this true depend on gcd(𝑎, 12); we have

𝑚 = 12
gcd(𝑎, 12)

𝑛

for integers 𝑛. Thus, the solutions are

𝑥 = 𝑥1 +
12

gcd(𝑎, 12)
𝑛.

Note that 𝑛 can be any integer, not just among the positive integers. Since 0 ≤ 𝑥 ≤ 11, the number of
solutions is bounded. Substituting 𝑥 and subtracting 𝑥1 from all sides, we find that

−𝑥1 ≤ 12
gcd(𝑎, 12)

𝑛 ≤ 11 − 𝑥1

In the twelve consecutive integers between −𝑥1 and 11 − 𝑥1 inclusive, there are always going to be
gcd(𝑎, 12) integers divisible by 12

gcd(𝑎,12) . The possible values of gcd(𝑎, 12) are 1, 2, 3, 4, 6, and 12; the divisors
of 12.

To recap: we know that 0 values are possible. If a solution for some pair (𝑎, 𝑏) exists, then there are
gcd(𝑎, 12) solutions for that pair in total. The possible numbers of solutions for 𝑥 are 0, 1, 2, 3, 4, 6, and 12.

6. How does the number of solutions to 𝑎𝑥 ≡ 𝑏 relate to the idea of multiplicative inverse? (Hint:
You can try solving for 𝑎 = 5, 7, 11 and 𝑏 = 1. What numbers would be 5−1, 7−1, 11−1 in clock
arithmetic?)

If we multiply both sides by the “inverse” of 𝑎, then we get 𝑥 ≡ 𝑏𝑎−1. This would give us a quick way to
solve for 𝑥. The question is whether such an “inverse” exists.

Well, this equation 𝑥 ≡ 𝑏𝑎−1 is only valid if there is a single solution for 𝑥; otherwise, since 0 ≤ 𝑥 ≤ 11,
this wouldn’t encapsulate all the possible values of 𝑥. Thus, gcd(𝑎, 12) = 1. This is true for all the 𝑎 values in
the hint.

We can find 5−1, 7−1, and 11−1 by just trying numbers.25 For example, 5−1 is just the solution to the
equation 5𝑎 ≡ 1, which is clearly 5, since 25 = 2 ⋅ 12 + 1. 7−1 is 7, since 7 ⋅ 7 ≡ 1. Finally, 11−1 is 11, since
11 ⋅ 11 ≡ 1. Interesting!

25There is a better way to do this, called the Extended Euclidean Algorithm. Check it out if you’re bored!
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7. How does this all relate to groups?

(a) The clock numbers are a group under clock addition. Name that group!

The group is the cyclic group of order 12.

(b) They are not a group under clock multiplication. Why?

1 can’t be the identity element, because there’s no element 𝑥 such that 0 ⋅ 𝑥 = 1. Without an identity
element, it can’t be a group.

(c) A subset of four of the clock numbers form a group under the operation of clock multipli-
cation. Find them, and write a group table.

It’s not immediately obvious how we’d find this subset besides trying various pairs of elements and seeing
what they generate. If we remember the invertibility property, however, we realize that all elements of this
group must be coprime (i.e. not share any factors besides 1 with) 12. The only four elements which satisfy
this requirement are 1, 5, 7, and 11; notice how we’ve already seen three of these elements.

We can now write a group table to expose the structure of the group:

⋅ 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

(d) Describe this group. What is the inverse of each element?

Every element’s inverse is itself. The group is commutative (abelian); however it is not the cyclic group of
order 4.

(e) What symmetry group is it isomorphic to?

It is isomorphic to the symmetry group of the rectangle: the dihedral group of order 4, or 𝐷2.26

8. If the numbers on an advanced Mars clock went from 0 to 4,

(a) They would form a group under addition. Make a group table!

⋅ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

(b) What group is this isomorphic to?

This is isomorphic to the cyclic group of order 5.

(c) A subset of four of these numbers forms a group under multiplication. Find them and write
a group table.

Analogous to the original clock, which was modulo 12, the numbers which form the group under multipli-
cation must be coprime to 5. But since 5 is a prime, this is just {1, 2, 3, 4}.

⋅ 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

26This group is also sometimes known as the Klein four-group, denoted 𝑉 or 𝐾4.
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(d) Describe this multiplication group.

The group has order 4. It is commutative, and cyclic, with each element generated by a single element.

(e) What symmetry group is it isomorphic to?

Based on the above properties, this is isomorphic to the rotation group of the square: the cyclic group of
order 4, 𝐶4.

9.

(a) Find all solutions (𝑥, 𝑦) of
[

1 2
3 4

] [
𝑥
𝑦

]
=

[
5
6

]
, by multiplying out the left side and

rewriting this as a system of equations.

The left side multiplied out is
[
𝑥 + 2𝑦
3𝑥 + 4𝑦

]
. Thus, we have the system of equations

{
𝑥 + 2𝑦 = 5
3𝑥 + 4𝑦 = 6

.

There are a couple ways to solve this. Perhaps the easiest way is to double the first equation and subtract
it from the second equation:

3𝑥 + 4𝑦 = 6
−2 ⋅ (𝑥 + 2𝑦 = 5)

𝑥 = −4

If 𝑥 = −4, then −4 + 2𝑦 = 5, so 𝑦 = 9
2 . We can verify our solution by multiplying out the original matrix

form with the substitution (𝑥, 𝑦) =
(
4, 92

)
.

(b) Find all solutions (𝑥, 𝑦) of
[

1 2
2 4

] [
𝑥
𝑦

]
=
[

5
6

]

Multiplying out the left side and comparing corresponding parts, we get the following system of equations:
{

𝑥 + 2𝑦 = 5
2𝑥 + 4𝑦 = 6

.

Multiplying the top equation by 2 and subtracting it from the bottom equation, we get the following system
of equations:

2𝑥 + 4𝑦 = 6
−2 ⋅ (𝑥 + 2𝑦 = 5)

0 = −4

This is a contradiction, so there are no solutions (𝑥, 𝑦) to this equation.

(c) Find all solutions (𝑥, 𝑦) of
[

1 2
2 4

] [
𝑥
𝑦

]
=
[

5
10

]

Multiplying out the left side and comparing corresponding parts, we get the following system of equations:
{

𝑥 + 2𝑦 = 5
2𝑥 + 4𝑦 = 10

.

Multiplying the top equation by 2 and subtracting it from the bottom equation, we get the following system
of equations:

2𝑥 + 4𝑦 = 10
−2 ⋅ (𝑥 + 2𝑦 = 5)

0 = 0
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This is always true. This seems to imply that the original equation is true for all (𝑥, 𝑦), but this is not the
case. Solving for 𝑥 in terms of 𝑦 for each of the equations, we get 𝑥 = 5 − 2𝑦 for each. Also, if 𝑥 = 5 − 2𝑦,
then both equations are true. Thus, 𝑥 = 5− 2𝑦 is both a necessary and sufficient condition for the equation to
be true.

In any case, this yields an infinite number of solutions.

(d) What are all possible numbers of solutions that 𝐴𝑋 = 𝐵 can have, where 𝐴,𝐵 are 2× 2 and
2×1 matrices respectively and 𝑋 =

[ 𝑥
𝑦
]
? Use your knowledge of the properties of systems

of equations.

Letting 𝐴 =
[

𝑎 𝑏
𝑐 𝑑

]
and 𝐵 =

[
𝑓
𝑔

]
, we get the system of equations

{
𝑎𝑥 + 𝑏𝑦 = 𝑓
𝑐𝑥 + 𝑑𝑦 = 𝑔

.

With our knowledge of system of equations, we know that this can have 0, 1, or infinite solutions, depending
on 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔.

10. Now, let’s relate the two 2 × 2 matrices from the previous problem to the transformations we
know.

(a) Contrast the mapping properties of
[

1 2
3 4

]
and

[
1 2
2 4

]
.

[
1 2
2 4

]
projects to a line, and is thus not invertible, while

[
1 2
3 4

]
does not project to a line and is thus

invertible.

(b) Find the determinants of these matrices. What do you notice?

We have det
[

1 2
3 4

]
= −1 and det

[
1 2
2 4

]
= 0. The matrix which maps to a line has 0 determinant,

which is hardly a coincidence; since the (absolute value of the) determinant is the area of the unit square after
the mapping, this makes sense. The unit square is mapped to a line segment, which has 0 area.

(c) When is 𝑓 (𝑋) = 𝐴𝑋 a one-to-one function? That is, in mapping the plane, when does each
point in the image have exactly one preimage?

𝑓 (𝑋) = 𝐴𝑋 is a one-to-one function when 𝐴 has nonzero determinant. We’ll see how to prove this shortly,
but it makes sense that a matrix with zero determinant, being a mapping to a line, is not one-to-one.

(d) Compare how you find the number of solutions of the real number equation 𝑎𝑥 = 𝑏 with
how you find the number of solutions of the matrix equation 𝐴𝑋 = 𝐵.

For 𝑎𝑥 = 𝑏, we have three cases:

# solutions =
⎧⎪⎨⎪⎩

∞ (𝑎, 𝑏) = (0, 0)
0 𝑎 = 0, 𝑏 ≠ 0
1 otherwise

.

For 𝐴𝑋 = 𝐵, we have three cases27:

# solutions =
⎧⎪⎨⎪⎩

∞ det 𝐴 = 0, 𝐵 is on the line 𝐴 maps to
1 det 𝐴 = 0, 𝐵 is not on the line 𝐴 maps to
1 otherwise

.

Thus, the condition that det 𝐴 = 0 is analogous to 𝑎 = 0, and the condition that 𝐵 is on the line 𝐴 projects
to is analogous to 𝑏 = 0.

27There is technically a “fourth case,” when 𝐴 is the matrix of all 0s, where there are infinite solutions if and only if 𝐵 =
[ 0
0
]
, but I have

kept it out of the main solution for simplicity. This is a “fourth case” because 𝐴 no longer projects to a line.
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11. Let 𝐾 =
[

5 7
8 −3

]
.

(a) Find all solutions to 𝐾
[

𝑥
𝑦

]
=
[

10
2

]
.

Expanding out the left side and comparing corresponding entries, we get the system of equations
{

5𝑥 + 7𝑦 = 10
8𝑥 − 3𝑦 = 2

.

This is a bit unpleasant to solve, but we can multiply the first equation by 8
5 and subtract the second

equation:

8
5 ⋅ (5𝑥 + 7𝑦 = 10)

8𝑥 − 3𝑦 = 2
71
5 𝑦 = 14

Thus, 𝑦 = 5
71 ⋅ 14 = 70

71 . We can get 𝑥 by substituting 𝑦 back into either equation. Choosing the second
equation, we get

8𝑥 − 3
(70
71

)
= 10

𝑥 =
10 + 210

71
8

= 44
71

.

Thus, (𝑥, 𝑦) =
(
44
71 ,

70
71

)
.

(b) If we knew a matrix which was the inverse of 𝐾 , written 𝐾−1, we could write the following
equation:

𝐾−1𝐾
[

𝑥
𝑦

]
= 𝐾−1

[
5
10

]
.

What would the left side reduce to?

The left side would reduce to 𝐼
[

𝑥
𝑦

]
=
[

𝑥
𝑦

]
, since by definition 𝐾−1𝐾 = 𝐼 .

12. Consider the following matrix inverses:

[
3 4
2 −5

]−1
=

[ 5
23 − 4

23
2
23

3
23

]

[
1 0
0 −1

]−1
=
[

1 0
0 −1

]

[
3 1
2 4

]−1
= 1

10

[
4 −1
−2 3

]

[
1 2
3 4

]
=
[

−2 1
3 −1

]

(a) Look for a pattern in these inverses.

It appears that they are some fraction of a matrix with the top-left and bottom-right entries swapped, and
the bottom-left and top-right entries negated. With some closer inspection, the fraction appears to be 1

det𝑀 .

(b) Describe the inverse of an arbitrary matrix:
[

𝑎 𝑐
𝑏 𝑑

]−1
= 1

[ ]
. Use the word

determinant in your answer.
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The inverse of an arbitrary matrix
[

𝑎 𝑐
𝑏 𝑑

]
is

1
𝑎𝑑 − 𝑏𝑐

[
𝑑 −𝑐
−𝑏 𝑎

]
.

In words, we swap the top-left and bottom-right entries, then negate the other two entries, and divide by
the determinant of the matrix.

(c) We’ve been writing the inverse of matrix 𝐴 as 𝐴−1. Why does this notation make sense?

This makes sense because 𝐴𝐴−1 = 𝐼 , and 𝐼 is analogous to 1 in 𝑎𝑎−1 = 1 in that multiplying by it does
nothing.

13. Now, see what happens when you multiply the following matrices:

(a) − 1
2

[
2 3
4 5

] [
5 −3
−4 2

]

−1
2

[
2 ⋅ 5 + 3 ⋅ −4 2 ⋅ −3 + 3 ⋅ 2
4 ⋅ 5 + 5 ⋅ −4 4 ⋅ −3 + 5 ⋅ 2

]
= −1

2

[
−2 0
0 −2

]
=
[

1 0
0 1

]
.

(b) 1
71

[
5 7
8 −3

] [
3 7
8 −5

]

1
71

[
5 ⋅ 3 + 7 ⋅ 8 5 ⋅ 7 + 7 ⋅ −5
8 ⋅ 3 − 3 ⋅ 8 8 ⋅ 7 + −3 ⋅ −5

]
= 1

71

[
71 0
0 71

]
=
[

1 0
0 1

]
.

(c)
[

𝑎 𝑐
𝑏 𝑑

]
1

𝑎𝑑−𝑏𝑐

[
𝑑 −𝑐
−𝑏 𝑎

]

1
𝑎𝑑 − 𝑏𝑐

[
𝑎𝑑 − 𝑐𝑏 −𝑎𝑐 + 𝑐𝑎
𝑏𝑑 − 𝑑𝑏 −𝑐𝑏 + 𝑎𝑑

]
=
[

1 0
0 1

]
.

(d) 1
𝑎𝑑−𝑏𝑐

[
𝑑 −𝑐
−𝑏 𝑎

] [
𝑎 𝑐
𝑏 𝑑

]

1
𝑎𝑑 − 𝑏𝑐

[
𝑑𝑎 − 𝑐𝑏 𝑑𝑐 − 𝑐𝑑
−𝑏𝑎 + 𝑎𝑏 −𝑏𝑐 + 𝑎𝑑

]
=
[

1 0
0 1

]
.

14. For another approach to finding the inverse of a matrix, solve the following for 𝑤, 𝑥, 𝑦, 𝑧 in terms
of 𝑎, 𝑏, 𝑐, 𝑑 by converting the matrix equations into a set of four linear equations:

[
𝑤 𝑦
𝑥 𝑧

] [
𝑎 𝑐
𝑏 𝑑

]
=
[

1 0
0 1

]
.

The left side is
[

𝑤𝑎 + 𝑦𝑏 𝑤𝑐 + 𝑦𝑑
𝑥𝑎 + 𝑧𝑏 𝑥𝑐 + 𝑧𝑑

]
. This yields the system of equations

⎧⎪⎪⎨⎪⎪⎩

𝑤𝑎 + 𝑦𝑏 = 1
𝑤𝑐 + 𝑦𝑑 = 0
𝑥𝑎 + 𝑧𝑏 = 0
𝑥𝑐 + 𝑧𝑑 = 1

.

This does not look pleasant. No factors are shared at all.
From the second equation, we see that 𝑤 = − 𝑦𝑑

𝑐 . Substituting into the first equation, we get
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(
−𝑦𝑑

𝑐

)
𝑎 + 𝑦𝑏 = 1

𝑦
(−𝑎𝑑 + 𝑏𝑐

𝑐

)
= 1

𝑦 = 𝑐
−𝑎𝑑 + 𝑏𝑐

𝑦 = − 𝑐
𝑎𝑑 − 𝑏𝑐

.

Progress! We substitute this into our expression for 𝑤:

𝑤 = −𝑦𝑑
𝑐

= −
− 𝑐

𝑎𝑑−𝑏𝑐 ⋅ 𝑑

𝑐
= 𝑑

𝑎𝑑 − 𝑏𝑐
.

We can apply the same logic to the latter two equations. From the third equation, we see that 𝑥 = − 𝑧𝑏
𝑎 .

Substituting this into the fourth equation, we get

(
−𝑧𝑏

𝑎

)
𝑐 + 𝑧𝑑 = 1

𝑧
(𝑎𝑑 − 𝑏𝑐

𝑎

)
= 1

𝑧 = 𝑎
𝑎𝑑 − 𝑏𝑐

.

We substituting this back into our expression for 𝑥:

𝑥 = −
𝑎

𝑎𝑑−𝑏𝑐 ⋅ 𝑏

𝑎
= − 𝑏

𝑎𝑑 − 𝑏𝑐
.

Overall we get the following answer for the inverse matrix:

[
𝑤 𝑦
𝑥 𝑧

]
=

[
𝑑

𝑎𝑑−𝑏𝑐 − 𝑐
𝑎𝑑−𝑏𝑐

− 𝑏
𝑎𝑑−𝑏𝑐

𝑎
𝑎𝑑−𝑏𝑐

]
= 1

𝑎𝑑 − 𝑏𝑐

[
𝑑 −𝑐
−𝑏 𝑎

]
.

This agrees with our previous observations.

15. Rewrite each system of equations in matrix form. Use your calculator to calculate a matrix
inverse, solve the system, and finally, check your answer. Remember to make clear in your work
when you have used a calculator.

(a)

{
2𝑥 + 3𝑦 = 5
4𝑥 + 5𝑦 = 7

In matrix form:
[

2 3
4 5

] [
𝑥
𝑦

]
=
[
5
7

]
.

We left-multiply both sides by the inverse of
[

2 3
4 5

]
, which WolframAlpha informs us is

[
𝑥
𝑦

]
=
[

2 3
4 5

]−1 [5
7

]
=
[
−2
3

]
.

Thus, (𝑥, 𝑦) = (−2, 3).

(b)

{
37𝑥 + 12𝑦 = 65
93𝑥 + 40𝑦 = 156
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[
37 12
93 40

] [
𝑥
𝑦

]
=
[
65
156

]
.

We left-multiply both sides by the inverse of
[

37 12
93 40

]
, which WolframAlpha informs us is

[
37 12
93 40

]−1 [ 65
156

]
=
[ 2
− 3

4

]
.

Thus, (𝑥, 𝑦) =
(
2,− 3

4

)
.

(c)

⎧⎪⎨⎪⎩

2𝑥 + 5𝑦 + 3𝑧 = 5
3𝑥 + 2𝑦 + 4𝑧 = 7
13𝑥 + 16𝑦 + 18𝑧 = 4

⎡
⎢⎢⎣

2 5 3
3 2 4
13 16 18

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝑥
𝑦
𝑧

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

5
7
4

⎤
⎥⎥⎦
.

We left-multiply both sides by the inverse of the 3 × 3 matrix, which WolframAlpha informs us... doesn’t
exist.

But are there infinite solutions or no solutions for (𝑥, 𝑦, 𝑧)? Well, we can try to derive a contradiction with
the equations we have, though that’s kind of ugly. Subtracting 8 times the second equation from the third
equation, we get

13𝑥 + 16𝑦 + 18𝑧 = 4
−8(3𝑥 + 2𝑦 + 4𝑧 = 7)
−11𝑥 + 14𝑧 = −52. (1)

We can do this with several combinations:

2(3𝑥 + 2𝑦 + 4𝑧 = 7)
−3(2𝑥 + 5𝑦 + 3𝑧 = 5)
−11𝑦 − 𝑧 = −1; (2)

6(2𝑥 + 5𝑦 + 3𝑧 = 5)
−(13𝑥 + 16𝑦 + 18𝑧 = 4)
𝑥 + 14𝑦 = 26. (3)

There seem to be some shared numbers cropping up. We multiply Equation (2) by 14 and add it to 11
times Equation (3):

14(−11𝑦 − 𝑧 = −1)
11(𝑥 + 14𝑦 = 26)
−14𝑧 + 11𝑥 = 272
−11𝑥 + 14𝑧 = −272.

Combining this with our first equation, we get −52 = −272, a contradiction. Thus, there are no solutions
to this system of equations.

As an aside, there’s a significantly nicer way to check whether there’s no or infinite solutions using reduced
row-echelon form, which is a function called rref on your calculator. Basically, apply rref to the matrix

𝑀 =
⎡⎢⎢⎣

2 5 3 5
3 2 4 7
13 16 18 4

⎤⎥⎥⎦
,

and if the last row is [0 0 0 𝑥] where 𝑥 ≠ 0, there is no solution. Otherwise, there are infinite solutions.
In this case,

rref(𝑀) =
⎡⎢⎢⎢⎣

1 0 14
11 0

0 1 1
11 0

0 0 0 1

⎤⎥⎥⎥⎦
,
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so 𝑥 = 1 and there are no solutions. As for what rref really is... Wikipedia is your friend!

(d)

⎧
⎪⎪⎨⎪⎪⎩

𝑤 + 2𝑥 + 3𝑦 + 4𝑧 = 7
3𝑤 − 𝑥 − 2𝑦 − 5𝑧 = 5
5𝑤 + 3𝑥 − 𝑦 − 4𝑧 = 3
7𝑤 + 9𝑥 + 5𝑦 − 2𝑧 = 2

In matrix form:

⎡⎢⎢⎢⎣

1 2 3 4
3 −1 −2 −5
5 3 −1 −4
7 9 5 −2

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

𝑤
𝑥
𝑦
𝑧

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

7
5
3
2

⎤⎥⎥⎥⎦
.

Left-multiplying by the inverse of the 4 × 4 matrix gives, according to WolframAlpha:

⎡⎢⎢⎢⎣

𝑤
𝑥
𝑦
𝑧

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

1 2 3 4
3 −1 −2 −5
5 3 −1 −4
7 9 5 −2

⎤⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣

7
5
3
2

⎤⎥⎥⎥⎦
= 1

226

⎡⎢⎢⎢⎣

871
−696
−257
333

⎤⎥⎥⎥⎦
.

Disgusting! So the solution is (𝑤, 𝑥, 𝑦, 𝑧) =
(
871
226 ,

−696
226 , −257226 , 333226

)
.

(e)

⎧⎪⎨⎪⎩

2𝑥 + 5𝑦 + 2𝑧 = 1
3𝑥 + 2𝑦 + 4𝑧 = 1
13𝑥 + 16𝑦 + 18𝑧 = 5

This looks rather similar to two problems ago, but the coefficients are slightly different. Indeed, such a
small change can permit an inverse.

In matrix form:

⎡⎢⎢⎣

2 5 2
3 2 4
13 16 18

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

1
1
5

⎤⎥⎥⎦
.

Left-multiplying by the inverse of the 3 × 3 matrix with WolframAlpha gives

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

2 5 2
3 2 4
13 16 18

⎤⎥⎥⎦

−1 ⎡⎢⎢⎣

1
1
5

⎤⎥⎥⎦
=
⎡⎢⎢⎢⎣

3
11
1
11
0

⎤⎥⎥⎥⎦
.

Thus, (𝑥, 𝑦, 𝑧) =
(

3
11 ,

1
11 , 0

)
.

(f) When can you use matrix inverses to solve a system of equations?

You can use matrix inverses when the system is a system of 𝑛 linear equations in 𝑛 variables, as such a
system always be rearranged to what we have dealt with in the past few problems. Furthermore, they will find
the solution if it exists, but if there are zero or infinite solutions, it cannot differentiate between the two cases.

16. You can fit a polynomial to any set of points in the plane, so long as the points pass the Vertical
Line Test.

(a) What is the least degree polynomial through

i. One point?

A polynomial of degree 0 can pass through a point. After all, if the point is (𝑎, 𝑏), then the polynomial 𝑦 = 𝑏
passes through the point.
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ii. Two points?

A polynomial of degree 1 (i.e. a line) can pass through two points.

iii. Three points?

A polynomial of degree 2 (i.e. a quadratic) can pass through three points.

iv. 𝑛 points?

A polynomial of degree 𝑛 − 1 can pass through 𝑛 points. The easiest way to see this is to suppose we
have points (𝑥1, 𝑦1),⋯ , (𝑥𝑛, 𝑦𝑛) and a general degree 𝑛 − 1 polynomial

𝑃 (𝑥) = 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +⋯ + 𝑎1𝑥 + 𝑎0.

Then the polynomial passing through the points (𝑥𝑖, 𝑦𝑖) is equivalent to the system of equations

⎧⎪⎪⎨⎪⎪⎩

𝑎𝑛−1𝑥
𝑛−1
1 + 𝑎𝑛−2𝑥

𝑛−2
1 +⋯ + 𝑎1𝑥1 + 𝑎0 = 𝑦1

𝑎𝑛−1𝑥
𝑛−1
2 + 𝑎𝑛−2𝑥

𝑛−2
2 +⋯ + 𝑎1𝑥2 + 𝑎0 = 𝑦2

⋮ ⋮

𝑎𝑛−1𝑥
𝑛−1
𝑛 + 𝑎𝑛−2𝑥

𝑛−2
𝑛 +⋯ + 𝑎1𝑥𝑛 + 𝑎0 = 𝑦𝑛

.

We can express this as the matrix equation

⎡⎢⎢⎢⎣

𝑥𝑛−11 𝑥𝑛−21 ⋯ 𝑥1 1
𝑥𝑛−12 𝑥𝑛−22 ⋯ 𝑥2 1
⋮ ⋮ ⋱ ⋮ ⋮

𝑥𝑛−1𝑛 𝑥𝑛−2𝑛 ⋯ 𝑥𝑛 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

𝑎𝑛−1
𝑎𝑛−2
⋮
𝑎0

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

𝑦1
𝑦2
⋮
𝑦𝑛

⎤⎥⎥⎥⎦
.

Note that the matrices here are 𝑛×𝑛 and 𝑛×1. We can solve this as usual by left-multiplying by the inverse
of the big square matrix, which provides a solution for (𝑎𝑛−1, 𝑎𝑛−2,⋯ , 𝑎0), and thus a polynomial satisfying the
requirements.

For the interested: we actually have to prove that the big square matrix 𝑀 is invertible. Thus, we need to
show that det𝑀 ≠ 0. This is the kind of thing that more advanced linear algebra is useful for, but it turns out
that the determinant of 𝑀 is

det𝑀 =
𝑛−1∏
𝑖=1

𝑛∏
𝑗=𝑖+1

(𝑥𝑗 − 𝑥𝑖).

This may look terrifying, but this means we take the product of (𝑥𝑗 − 𝑥𝑖) for indices 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. That is,
we take the product of that expression for all (𝑖, 𝑗) pairs where 𝑗 is strictly greater than 𝑖. The proof of this is
beyond the scope of this book.

Recalling the zero product property, that expression for det𝑀 is 0 if and only if one of the products is 0.
Thus, it’s 0 if and only if 𝑥𝑗 = 𝑥𝑖 for some 𝑖 < 𝑗. This makes sense! If there are two (or more) points with the
same 𝑥 coordinate, then the determinant is 0, and the matrix is not invertible. If all 𝑥 coordinates are unique,
however, then the determinant is nonzero, and the inverse and solution exist.

𝑀 is a special type of matrix known as a Vandermonde matrix.

(b) Find a polynomial of least degree that passes through (0, 3), (1, 5), (2,−3), (3, 4), and (4, 7).

We apply our findings from the previous problem, setting 𝑛 = 5, (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 1, 2, 3, 4) and
(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) = (3, 5,−3, 4, 7). The matrix equation is

⎡⎢⎢⎢⎢⎢⎣

04 03 02 0 1
14 13 12 1 1
24 23 22 2 1
34 33 32 3 1
44 43 42 4 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝑎4
𝑎3
𝑎2
𝑎1
𝑎0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

3
5
−3
4
7

⎤⎥⎥⎥⎥⎦
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⟹

⎡⎢⎢⎢⎢⎣

𝑎4
𝑎3
𝑎2
𝑎1
𝑎0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 0 0 0 1
1 1 1 1 1
16 8 4 2 1
81 27 9 3 1
256 64 16 4 1

⎤⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎣

3
5
−3
4
7

⎤⎥⎥⎥⎥⎦

WolframAlpha
= = 1

6

⎡⎢⎢⎢⎢⎣

−11
91

−226
158
18

⎤⎥⎥⎥⎥⎦
.

Terrifeunt! Thus, the polynomial is

𝑦 = −11
6
𝑥4 + 91

6
𝑥3 − 226

6
𝑥2 + 158

6
𝑥 + 18

6
𝑦 = −11

6
𝑥4 + 91

6
𝑥3 − 113

3
𝑥2 + 79

3
𝑥 + 3.
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